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SUMMARY

Human cellular models and their neuronal derivatives have af-

forded unprecedented advances in elucidating pathogenic

mechanisms of neuropsychiatric diseases. Notwithstanding

their indispensable contribution, animal models remain the

benchmark in neurobiological research. In an attempt to

harness the best of both worlds, researchers have increasingly

relied on human/animal chimeras by xenografting human cells

into the animal brain. Despite the unparalleled potential of xen-

ografting approaches in the study of the human brain, literature

resources that systematically examine their significance and ad-

vantages are surprisingly lacking. We fill this gap by providing a

comprehensive account of brain diseases that were thus far sub-

jected to all three modeling approaches (transgenic rodents,

in vitro human lineages, human-animal xenografting) and

provide a critical appraisal of the impact of xenografting ap-

proaches for advancing our understanding of those diseases

and brain development. Next, we give our perspective on inte-

grating xenografting modeling pipeline with recent cutting-

edge technological advancements.

INTRODUCTION

Brain development is a spatially and temporally tightly

regulated process of gene expression (Silbereis et al.,

2016). The increasingly sophisticated brain organization

and function makes it highly vulnerable, so that even

subtle dysregulations can result in neurological impair-

ments that can become evident early or later on in

life (i.e., neurodevelopmental and neurodegenerative

disorders).

The advent of somatic cell reprogramming, involving

the reverting of a terminally differentiated cell to a plurip-

otent stage by viral expression of a handful of genes

(Takahashi and Yamanaka, 2006), was a watershed

moment for the disease modeling field, chiefly because it
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provided, for the first time, an unlimited source of previ-

ously inaccessible, relevant cell types. More recently, the

emergence of increasingly sophisticated 3D cellular

models (i.e., brain organoids) has promised to revolu-

tionize disease modeling and make the study of the brain

experimentally more tractable.

Despite the tremendous contribution that cellular

in vitro models have made in elucidating disease mecha-

nisms (Adamo et al., 2015; Brennand et al., 2011; Eiraku

et al., 2008; Lancaster et al., 2013; López-Tobón et al.,

2023; Pașca et al., 2011), the in vivo animal models

remain the gold standard, especially when it comes to

assessment of behavioral readouts and neurobiological

disease mechanisms in vivo, and are widely used for pre-

clinical validation of drug efficacy and safety, in spite of

recent major, transformative changes that authorize the

use of cell-based assays and computer-based models for

assessing safety and effectiveness of novel drugs (Jucker,

2010; Nestler and Hyman, 2010; Vandamme, 2014; Wad-

man, 2023; Wax, 1995; FDA Modernization Act 2.0,

2022). In an attempt to combine in vitro with in vivo

approaches and harness their edges, researchers have

xenografted human cellular models into the rodent brain

(Espuny-Camacho et al., 2013; Gaspard et al., 2008;

Mansour et al., 2018; Neuhof, 1923; Revah et al.,

2022). Notwithstanding the transformative potential of

human-rodent chimeras for uncovering the underlying

mechanisms of brain structure and function in health

and disease, resources that systematically evaluate their

significance and their potential integration with relevant

cutting-edge technologies from neighboring fields are

lacking, thus hindering the adoption of xenografting ap-

proaches by the wider scientific community.

In the first part of this review, we provide a systematic

account of the brain diseases that were thus far subjected

to all three kinds of modeling approaches (transgenic
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Figure 1. Brain disorders modeled using in vitro, in vivo, and xenografting approaches
List of brain disorders investigated using all three modeling approaches and representative references for each disorder. The list of brain
disorders includes neurodegenerative (Alzheimer’s and Parkinsons’ disease), neurodevelopmental (Down syndrome and Schizophrenia),
and common neurological disorders (Epilepsy).
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rodents, in vitro human neural lineages, and human-ro-

dent xenografting) and provide a critical appraisal of the

impact of human-rodent xenografting approaches for

advancing our knowledge of those diseases and brain

development. Focusing on paradigmatic cases, the juxta-

position of findings from the three models cross-illumi-
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nates their specificities and defines the edge provided by

a xenograft-centered roadmap for the systematic in vivo

benchmarking of in vitro human neural models (Figures 1

and 2).

Building on the lessons learned from these initial

paradigms, in the second part we put the xenografting



Figure 2. Modeling approaches for brain disorders
2D cellular culture systems due to their reductionistic nature permit an unparalleled degree of scalability that gradually diminishes with
more sophisticated, multi-dimensional systems. In contrast, complexity is high in 3D and xenografting systems and low in simple cellular
models.
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modeling pipeline into the context of cutting-edge techno-

logical advancements that, together, are best poised to

bring such models to full fruition since they afford unprec-

edented opportunity to interrogate human neural tissue

within the organismal and behaving context of the most

advanced rodent models.
XENOGRAFTING APPROACHES ELUCIDATING

NEURODEVELOPMENT AND NEURONAL

DIFFERENTIATION

Early studies with embryonic or induced pluripotent stem

cells (iPSCs) utilized xenografting to probe the competence

of stemcells to differentiate and recapitulate in vivoneurode-

velopmental milestones. An early prominent example was

the generation of glutamatergic induced neurons (iNs)

from embryonic cells or iPSC by overexpression of the pro-

neural transcription factor neurogenin-2; iN functionally in-

tegrated into the adultmouse striatumby forming extensive

neuronal arborizations and synaptic connections (Zhang

et al., 2013). Similarly, ectopic expression of a cocktail of 5

transcription factors efficiently converted mouse and hu-

man fibroblasts into GABAergic neurons. Transplantation
into mouse hippocampus showed that gamma-aminobuty-

ric acid (GABA) iN not only established robust synaptic

contacts but also efficiently integrated into the host circuitry

as shown by patch-clamp recordings and optogenetics

approaches (Colasante et al., 2015). Work from Vanderhae-

ghen laboratory utilized extensively xenografting ap-

proaches to demonstrate that human andmouse embryonic

stem cells (ESCs) and human iPSC (hiPSC) are inherently

capable of recapitulating cardinal aspects of in vivo neuronal

differentiation and corticogenesis. Remarkably, when

mouse ESCs were grafted into the mouse neonatal brain,

they developed extensive projections targeting specific

cortical regions, revealing an intrinsically programmed

cortical identity without dictation from the host brain (Gas-

pard et al., 2008). Similarly, grafted human ESC (hESC) and

iPSC into the mouse cortex developed reciprocal synaptic

connections with the host circuitries even receiving

thalamic input, demonstrating an unprecedented func-

tional integration. Importantly, human stem cells revealed

a species-specific neuronal maturation potential as they

reached full maturity at 9 months after transplantation,

closelymatching temporally thematuration of human neu-

rons in vivo, without the influence of the mouse host (Es-

puny-Camacho et al., 2013).
Stem Cell Reports j Vol. 19 j 767–795 j June 11, 2024 769
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Stem cells hold an enormous potential for brain repair.

This was elegantly exemplified by xenografting mouse and

hESCs into the mouse adult cortex (Espuny-Camacho

et al., 2018; Falkner et al., 2016; Michelsen et al., 2015).

Following chemical lesion of the adult visual cortex, ESCs

were either grafted directly or specified first in vitro to differ-

entiate into pyramidal neurons of occipital cortex identity

and then grafted into the lesioned area. Over months,

grafted neurons reestablished the lost connectivity of

lesioned neurons by developing reciprocal long-range

axonal projections, received area-specific afferent input,

and efficiently integrated into the damaged circuits as

shown by responses to light stimulationmaking them indis-

tinguishable from host cortical neurons (Espuny-Camacho

et al., 2018; Falkner et al., 2016; Michelsen et al., 2015).

Worth noting that, in some adult models, the successful

restoration of lost connectivity required lesioning, the a pri-

ori fate specification of ESCs in vitro, and a match between

donor and host area identity. Notwithstanding, more

recently it became apparent that when grafted into the

neonatal mouse cortex, hESCs still retain the capacity for

functional integration even in the absence of lesioning

and cortical area match between donor and host. Specif-

ically, hESCs grafted into the ventricles of neonatal

mice matured over several months, exhibiting the donor

species-specific protracted temporal maturation. Grafted

neurons exhibited progressive morphological and electro-

physiological maturation, gradually stabilizing their den-

dritic spines dynamics, indications of complete, functional,

and reciprocal neuronal connections. Remarkably, the

grafted mature neurons showcased an unprecedented func-

tional integration propensity into the host visual cortex cir-

cuits by demonstrating robust and tuned visually driven

responses to moving bars of different directions and fre-

quencies, strikingly similar to endogenous mouse cortical

neurons (Linaro et al., 2019). All the aforementioned studies

used glutamatergic pyramidal neurons; nevertheless, com-

plete,mature neuronal circuits contain also inhibitory inter-

neurons, which are also critical for defining the critical

period of visual acuity (Fagiolini and Hensch, 2000).

Although not xenografting, embryonic mouse medial

ganglionic eminence (MGE)-derived interneurons grafted

into the visual cortex of visually deprived adult mice inte-

grated into the appropriate visual cortex circuitries as shown

by their participation to visually evoked responses. Strik-

ingly, the grafting reinstituted the critical period in adult-

hood and improved visual acuity in previously visually

deprived adult mice (Davis et al., 2015).

Xenografting approaches have proved extremely rele-

vant evenwith themost recent 3D brain organoidsmodels.

Despite their transformative potential, brain organoids

lack an efficient circulatory system for the even distribution

of nutrients and oxygen, invariably leading to necrotic
770 Stem Cell Reports j Vol. 19 j 767–795 j June 11, 2024
areas and ectopic activation of cellular stress responses,

which in turn might prevent the appearance of diverse

neuronal subtypes and brain fidelity (Bhaduri et al., 2020;

Di Lullo and Kriegstein, 2017). All these aspects that have

plagued the nascent field from the very beginning were

resolved upon organoid grafting into the mouse brain. As

a matter of fact, hESC-derived brain organoids were differ-

entiated in vitro for 40–50 days and subsequently trans-

planted into the brain of immunocompromised adult

mice. Similar to 2D neuronal cultures, grafted organoid-

derived neurons showed progressive maturation, estab-

lished reciprocal connections with the host neurons, and

integrated into the host neuronal circuits as shown by cal-

cium imaging and optogenetics experiments. Critically,

the neuronal apoptosis in the organoid core was dramati-

cally reduced, and functional blood vessels innervated

the human organoids (Mansour et al., 2018). Likewise,

upon transplantation in the mouse cortex, organoid-

derived neurons stably downregulated expression of meta-

bolic stress markers and increased progenitor and juvenile

neuronal subtype specification (Bhaduri et al., 2020),

dramatically enhancing their fidelity to the developing hu-

man brain. Very recent studies have started to redefine the

horizon of xenografting approaches potential for disease

modeling (Revah et al., 2022; Schafer et al., 2023). Grafting

of intact organoids into newborn rats’ somatosensory cor-

tex ensured graft’s integrationwith the host circuit without

disrupting the endogenous developmental trajectories.

Grafted organoids grew over months, and their neurons

developedmore mature morphological, synaptic, and elec-

trophysiological features compared with their in vitro

counterparts. Remarkably, maturation and functional inte-

gration of grafted organoidswith the development of recip-

rocal connections modulated complex behaviors such as

reward seeking and learning (Revah et al., 2022). The afore-

mentioned studies highlight the tremendous advance-

ments in our understanding of neuronal differentiation

and neuronal circuitries formation that xenografting

models have afforded us and which were not previously

possible in neither purely in vitro nor animal in vivomodels.

This new knowledge grounds the hopes for the implemen-

tation of xenografting approaches in themodeling toolbox

for the study of complex neurodevelopmental disorders

that so far have been notoriously challenging to model.
BRAIN DISORDERS MODELED USING IN VITRO,

IN VIVO, AND XENOGRAFTING APPROACHES

Alzheimer’s disease

Already in the early 1900s, the use of postmortem tissue

allowed neuropathologist Alois Alzheimer to observe

degenerating neurons with bundles of fibrils and senile
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plaques scattered over the cortex (Alzheimer et al., 1995;

Yamaguchi et al., 1988). Alzheimer’s disease (AD), the

most common cause of dementia worldwide, is a tau pa-

thology characterized by extracellular deposits of amyloid

beta (Ab), the main component of amyloid plaques and

tau-containing intracellular neurofibrillary tangles, which

in turn are caused by the hyperphosphorylation of the

microtubule protein tau and its dissociation from the mi-

crotubules (Alzheimer et al., 1995; Braak and Braak, 1991;

Khachaturian, 1985). Despite their inherent limitation of

only providing a retrospective inference prone to several

confounders and incompatibility for establishing causa-

tion, studies from postmortem brains of AD patients have

revealed valuable features. These include the potential to

diagnose the cause of death, quantify cellular and molecu-

lar markers of several neuronal processes, and retrospec-

tively analyze and assess the heterogeneity of AD patients

(Braak and Braak, 1991; McCullumsmith et al., 2014; Stan

et al., 2006). However, data derived from human disease

modeling in vitro tools as well as from animal models pro-

vide specific mechanistic and behavioral insights that

cannot be generated using postmortem tissue.

A number of transgenic animal models have been devel-

oped to recapitulate specific pathological features of AD

and have provided important insights into the disease

(LaFerla and Green, 2012). Cleavage of amyloid precursor

protein (APP) by b and g secretases produces Ab aggregates

and formation of soluble oligomers, which are toxic to the

neurons because they adversely affect synaptic structure

and function and cellular homeostasis (Lambert et al.,

1998; Walsh et al., 2002). The fact that Ab toxicity is

affected by the levels of tauwas discovered using transgenic

mice models, including i) P301S mutant tau (PS19) Tg

mouse model of the four-repeat microtubule-associated

protein tau-generating animals with conditional (induc-

ible/reversible) tau and ii) bigenic models by crossing

PS19 Tg mouse model with the well-known PDAPP model

that overexpresses mutant V717F APP, among other rele-

vant hybrid transgenic rodent models (Götz et al., 2001;

Hurtado et al., 2010; Lewis et al., 2001; Pickett et al.,

2019; Roberson et al., 2007; Takashima et al., 1993). The

relationship between Ab toxicity and tau levels has been

confirmed more recently in vitro using iPSC-derived neu-

rons (Hu et al., 2018; Penney et al., 2020; Sackmann and

Hallbeck, 2020) and cerebral organoids (Gonzalez et al.,

2018). All these highlight a rare instance of convergence

between postmortem studies, transgenic animals, and hu-

man cellular models in revealing the complex interplay be-

tween Ab aggregates and tau and suggest that integrative

experimental systems are better suited for delineating hu-

man pathophysiology.

The involvement of non-neuronal cell types of the CNS

in the worsening of AD pathology, namely astrocytes,
was another important contribution of animal models,

although their critical role was already recognized by Alz-

heimer (1910). It has been established that astrocytes are

not merely supportive cells in the CNS (see review Araque

et al., 1999) and that astrocytic pathology at earlier stages

of AD disrupts synaptic connectivity, affects neurotrans-

mitter homeostasis, and induces neuronal death in mouse

models, contributing to the earliest neuronal deficits

observed in AD (Furman et al., 2012; Sidoryk-Wegrzyno-

wicz et al., 2017). Additionally, studies using human and

mice models have shown that, at later stages, astrocytes

become reactive, leading to other downstream conse-

quences associated with disease progression, and contrib-

uting to the inflammatory component of neurodegenera-

tion (Chun et al., 2020; Liao et al., 2016; Oksanen et al.,

2017). The critical role of astrocytes in ADneuronal pathol-

ogy is another point of convergence between human

and mouse model studies and underscores the value of

combining experimental approaches. Yet, recent findings

call for caution as major differences between human and

mouse astrocytes are emerging. A systematic comparison

between human and mouse astrocytes, and particularly

their responses to hypoxia, oxidative stress, and inflamma-

tion, revealed major species-specific differences in tran-

scriptional regulation, mitochondrial physiology, and abil-

ity to detoxify. Grafting of human astrocytes into the

mouse brain enabled a more in-depth comparison and

showed that human-specific transcriptional regulation is

intrinsically programmed and minimally affected by neu-

rons and other brain cell types (Li et al., 2021). Besides as-

trocytes, microglia, a type of neuroglia that act as resident

macrophages in the brain, have also been linked to ADneu-

rodegeneration. Reactive microgliosis, a term encompass-

ing the changes in morphology and function of microglia

following CNS insult, and increased apoptotic rates are fea-

tures commonly observed around amyloid plaques in both

Ab-transgenic and tauopathy mice models (Wang et al.,

2015; Yoshiyama et al., 2007). It is still not fully understood

whether microglial functions in AD are beneficial but not

sufficient or whether are effective at early stages but lose

their efficiency or even become obsolete in the irreversibly

damaged brain. Intense efforts to characterize microglia

cell types and functional states using omics at single-cell

resolution enabled the recognition of disease-associated

microglia (DAMs). DAMs subtypes, distinct from homeo-

static microglia, were identified by single-cell RNA

sequencing in 5xfFAD mouse model of Ab accumulation

and exhibit transcriptional signatures of genes expressed

by classical macrophages, as well as modules for the inter-

feron response, stress response, lysosomal function, and

lipid metabolism (Keren-Shaul et al., 2017). Although the

relationship between glial cells and AD was observed in

several postmortem specimens (Itagaki et al., 1989),
Stem Cell Reports j Vol. 19 j 767–795 j June 11, 2024 771
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additional recent studies motivated the community to

challenge the neuron-centric view, evenmore so as glia (as-

trocytes and microglia) are the first line of defense in the

CNS against any acute or chronic non-physiological pertur-

bation, especially in neurodegenerative disorders (Dräger

et al., 2022; Habib et al., 2020; Liddelow et al., 2017; Soreq

et al., 2017; Xu et al., 2019b).

These distinctive properties of glia were recently exem-

plified in a landmark study by Schafer and colleagues.

They colonized brain organoids with human PSC (hPSC)-

derived microglia and upon transplantation into immuno-

compromised mice observed the gradual molecular and

functional maturation of humanmicroglia and their direct

involvement in brain’s immune defense and reaction to

environmental insults. To highlight the potential of this

xenografting in vivo platform for disease modeling, the au-

thors revealed brain-microglia crosstalk in autism and an

autism-specific microglia phenotype (Schafer et al., 2023).

Although applied in an autismmodel, these reports clearly

illustrate the edges of xenografting approaches vis-à-vis an-

imal models or human in vitro models, in particular, for

revealing human-specific microglia properties in health

and disease in vivo.

A series of studies in the last decade, highlighted that

iPSCs, despite their age and neuronal maturation-related

limitations, can recapitulate hallmarks of AD neuropa-

thology. Initial studies aimed at uncovering the impact of

specific AD mutations on hiPSC-derived neurons and

evaluated the efficacy of drug compounds. For instance,

neurons from patients with familial AD (fAD) caused by

duplication of APP gene, E693D, or APPV717I mutations

contained more pathological markers, including higher

accumulation of amyloid-b, phosphotau, glycogen syn-

thase kinase-3b (GSK-3b), and endosomes, as well as oxida-

tive stress when compared with sporadic AD patients, sug-

gesting a convergence on molecular pathways of different

AD-relevant mutations. Interestingly, treatment with

b- but not g-secretase inhibitor has been shown to be effec-

tive in reducing phosphotau and aGSK-3b levels, whereas

docosahexaenoic acid was efficacious in reducing oxidative

stress (Kondo et al., 2013; Muratore et al., 2014). Further-

more, neural progenitors (Sproul et al., 2014) and neurons

from patients withmutations in presenilins 1 and 2 (PSEN)

that cause fAD secrete more amyloid b42 (Ab42), and that

could be remedied by g-secretase inhibitors (Yagi et al.,

2011). Mutations in PSEN1 affect also astrocytes derived

from patients’ iPSC by increasing levels of b-amyloid accu-

mulation, altered cytokine release, and disruption of cal-

cium homeostasis (Oksanen et al., 2017), providing strong

evidence for the contribution of non-neuronal cells in AD.

The critical roles of astrocytes and microglia in AD were

further corroborated by examining the impact of apolipo-

protein E4 (APOE4), the strongest risk factor gene for AD,
772 Stem Cell Reports j Vol. 19 j 767–795 j June 11, 2024
on different brain cell types (Lin et al., 2018). Transcrip-

tional profiling of astrocytes revealed defects on b-amyloid

uptake and lipid metabolism, whereas microglia, similarly

to astrocytes, exhibited less efficient b-amyloid uptake

and disruption of inflammatory response, while at the

same time transcriptional profiling and biochemical

analysis of neurons exhibited accelerated neuronal differ-

entiation, increased synaptic density and secretion of

Ab42, higher tau phosphorylation, and GABAergic neu-

rons degeneration (Lin et al., 2018; Wang et al., 2018).

APOE4 effects were specific and dependent on its structural

conformation, as the alleviation of the aforementioned de-

fects was possible by either conversion of APOE4 to APOE3

or treatment with the APOE4 structure corrector PH002

(Lin et al., 2018; Wang et al., 2018). Interestingly, most of

the aforementioned AD neuropathological phenotypes

were also recapitulated in 3D cellular models. As such,

the detrimental effect of APOE4 on synaptic density,

apoptosis, and high levels of b-amyloid were replicated

recently in cerebral organoids from AD patients (Zhao

et al., 2020). Choi and colleagues (Choi et al., 2014) used

a Matrigel-based 3D humanmodel to show that fADmuta-

tions, unlike in previous 2D models, could recapitulate, in

addition to abnormal high levels of b-amyloid and phos-

photau and the presence of b-amyloid plaques. The abnor-

mally high levels of b-amyloid and phosphotau and the

accumulation of neurofibrillary tangles-like aggregates

were also recapitulated in cerebral organoids generated

from patients with fAD and intriguingly from Down syn-

drome (DS) patients (Gonzalez et al., 2018). On the other

hand, Park and colleagues found microglia recruitment,

neurotoxic phenotypes, and oxidative stress that was detri-

mental to neurons and astrocytes (Park et al., 2018), using a

microfluidic platform to examine the interaction of neu-

rons, astrocytes, and microglia with AD-relevant muta-

tions, in a 3D physiological environment.

It has become apparent that the advent of cell reprog-

ramming and iPSCs advanced dramatically our under-

standing of AD pathophysiology and provided a high-

throughput platform for the testing of promising

therapeutic compounds in human cellular models.

Nevertheless, it is still not known whether and to

what degree the cellular phenotypes associated with

AD have actually discernible impact on cognition and

behavioral readouts.

To address how astrocytes influence AD-associated

phenotypes, Preman and colleagues xenografted hiPSC-

derived astrocyte progenitors into the brains of neonatal

mice. The authors documented that the engrafted

cells not only displayed human-specific morphology and

functionally integrated into the rodent host but also

under pathological conditions underwent morphological

changes, showing hypertrophic and atrophic phenotypes
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in response to amyloid plaques (Preman et al., 2021). Inter-

estingly, other studies have focused on studying how hu-

man iPSC-derived neurons are affected upon exposure to

murine AD models. For that purpose, after Espuny-

Camacho et al. transplanted human neurons into the

brains of newborn mice, they observed that cells matured

and integrated into the brain and, following several struc-

tural and functional alterations, underwent neurodegener-

ation (Espuny-Camacho et al., 2017). On the other hand,

additional efforts in optimizing the current protocols for

engrafting hiPSC-derived microglial cells are still ongoing

(Bassil et al., 2021; Fattorelli et al., 2021; Jiang et al., 2013;

Krencik et al., 2011;Mancuso et al., 2019). For instance,mi-

croglial cells successfully engrafted andmatured within the

mouse brains and were able to respond to trauma revealing

human-specific genes involved in the control of inflamma-

tion that had never been described before in rodent micro-

glial cells (Hasselmann et al., 2019). More recently, prelim-

inary data showed that grafted human microglia had a

gradual response to amyloid-b pathology that differs from

mouse microglia toward the same insult and proposed

that microglia follow distinct activation routes that might

directly affect the disease course in unpredicted ways

(preprint, Mancuso et al., 2022). These studies highlighted

species-specific features that can only be captured using hu-

man cellular models to reconstruct human-specific respon-

sive genes/networks and distinct cell states of microglia in

response to amyloid-b plaques.

For AD in particular, the integration of in vitro

human cellular models with animal models enabled i)

functional validation of cellular and molecular pheno-

types uncovered previously in either purely in vitro hu-

man or AD animal models, ii) a unique opportunity to

distinguish human-specific aspects of AD neuropa-

thology, iii) better understanding of AD disease mecha-

nisms by confirming the contribution of glial cells, and

iv) a translational platform for predictive and personal-

ized drug development.

Parkinson’s disease

Parkinson’s disease (PD) is characterized by progressive loss

of dopaminergic (DA) neurons of the substantia nigra pars

compacta (SNpc), depletion of dopamine levels, and accumu-

lationof intracellular aggregates,mainly composedbya-syn-

uclein (SNCA), named Lewy bodies (LBs) (Bernheimer et al.,

1973; Ehringer and Hornykiewicz, 1960; Polymeropoulos

et al., 1997; Spillantini et al., 1997). AlthoughPDclinical fea-

tures typically include resting tremor,muscle rigidity, brady-

kinesia, and impairedposture, severalothernon-motorman-

ifestations arise while PD gradually worsens in severity,

including depression, cognitive dysfunction, and insomnia

(Gelb et al., 1999; Levin et al., 1989; Nausieda et al., 1982;

Tandberg et al., 1996).Whilemotor symptoms are clinically
detectable, the brain pathology can only be confirmed by

examining postmortem tissues (Raunio et al., 2019; Saito

et al., 2003).

One of the key discoveries in the field was the use of

L-dopa (L-3,4-dihydroxy phenylalanine), the most

commonly prescribedmedicine aswell as the gold standard

of drug treatment for PD. The discovery of the catechol-

amine metabolism in rat brains was a turning point in PD

research and ushered in the era of L-dopa clinical trials in

PD patients (Carlsson et al., 1957; Fahn et al., 2004; Van Ar-

man, 1951; Yahr et al., 1969). A plethora of animal models

have enabled both molecular- and cellular-level investiga-

tions into the mechanisms of action and development of

L-dopa-induced motor complications to further explore

PD variability and improve its treatment (see review Cenci

and Crossman, 2018) and furthermore have been instru-

mental for investigating the role of specific PD genes. To

date, approximately 20 genes have been found to be impli-

cated in PD pathogenesis (MacMahon Copas et al., 2021).

Surprisingly, most of these genes are highly expressed in

astrocytes and microglia compared to neurons, thus

providing further evidence that neurodegeneration is not

a neuron-autonomous process but instead results from a

complex crosstalk between a multiplicity of cell types

within the brain. Several studies in rodents have evaluated

the role of PARK7 (Goldberg et al., 2005; Rousseaux et al.,

2012), PARK2, PINK1, SNCA (Abeliovich et al., 2000; Burré

et al., 2010; Cabin et al., 2005; Cooper et al., 2006), and

LRRK2 and have described astrocytes’ (Barodia et al.,

2019; Choi et al., 2016, 2019; Gu et al., 2010; Lee

et al., 2019) and microglial’ (Dionı́sio et al., 2019;

Duffy et al., 2018; Dwyer et al., 2020; Nash et al., 2017;

Sun et al., 2018) functions to be critically impaired and

constitute the first dysfunctions that then may be fueling

other PD features, ultimately leading to neuronal loss.

Interestingly, these features have also been observed using

hiPSC-derived in vitro systems (Aflaki et al., 2020; Booth

et al., 2019; Panagiotakopoulou et al., 2020; Sonninen

et al., 2020), corroborating the findings observed in human

models. Notwithstanding the key contributions of animal

models, it is imperative to note that the vast majority of

PD cases are sporadic and only rare familial cases are due

to specific genetic defects. Even more problematic is the

fact that no animal model recapitulates the full spectrum

of PD features (Dawson et al., 2010). For example, Lrrk2,

Snca, Parkin, and Pink1 transgenic mice do not exhibit sub-

stantial neurodegeneration (Daher et al., 2009; Kitada et al.,

2009; Li et al., 2009), although, when PARKIN and PINK1

are deleted in adulthood, there is DA neurons degeneration

(Lee et al., 2017; Shin et al., 2011). These conspicuous lim-

itations of PD animal models necessitated the use of hu-

man cellular models to examine the PD genes’ impact

in a human background or the use of xenografting
Stem Cell Reports j Vol. 19 j 767–795 j June 11, 2024 773



Stem Cell Reports
Review
approaches that would enable probing the links between

PD genes and neurodegeneration.

The use of in vitro disease modeling strategies, mainly pa-

tient-derived iPSCs differentiated into DA neurons (Cham-

bers et al., 2009; Doi et al., 2014; Kirkeby et al., 2012; Kriks

et al., 2011; Mahajani et al., 2019; Schweitzer et al., 2020;

Song et al., 2020), has dramatically advanced our under-

standing of PD initiation and progression and has facili-

tated the discovery of novel therapeutic solutions in

relevant human cellular models. For instance, Ryan and

colleagues used small-molecule high-throughput screening

of a library of compounds to reveal the ability of isoxazole

to specifically target MEFC2-PCG1a pathway, preventing

neuronal damage associated with PD (Ryan et al., 2013).

Naturally, potential targets which are identified through

screenings may be validated using iPSC-derived neurons.

For example, Soldner et al. validated an SNCA variant, in

a non-coding distal enhancer element that regulates the

expression of SNCA, which is associated with PD with use

of CRISPR-Cas9-edited iPSC-derived DA neurons (Soldner

et al., 2016). More recently, iPSC-based models revealed

that in young-onset PD reduced function of lysosomes un-

derlies a-synuclein accumulation and phosphorylation of

protein kinase C (PKC). Phorbol esters, which control

PKC activity and enhance lysosomal function, rescued

the disease phenotype (Laperle et al., 2020), uncovering a

novel candidate for therapeutic intervention.

The recent advances in 3D brain organoid technology

promises to further improve our understanding of hu-

man-specific features linked with development, disease

progression, and unique phenotypic profiling of genetic/

sporadic PD. In vitro complex systems like midbrain orga-

noids have put forward a new platform for uncovering

the key factors that mediate PD pathological phenotypes,

as well as for testing new compounds. Several research

groups have indeed started to assess the contribution of

these models and have shown that brain and midbrain-

like 3D organoids recapitulate disease phenotypes and

can elucidate unexplored aspects of this neurodegenerative

disorder (Jo et al., 2016; Monzel et al., 2017; Smits et al.,

2019;Wulansari et al., 2021). A clear example is the discov-

ery of newdirect functional connections that interferewith

a-synuclein turnover and could not be captured in any hu-

manmodel besides 3D organoid cultures (Kim et al., 2019).

While it has been reported that Thioredoxin-interacting

protein (TXNIP) is linked with a-synuclein-induced PD

(Su et al., 2017), Kim and colleagues have described a previ-

ously unknown interaction that places leucine-rich repeat

kinase 2 (LRRK2) upstream of TXNIP in the regulation of

a-synuclein and PD development (Kim et al., 2019).

Notwithstanding the remaining challenges, including a

more faithful recapitulation of age-related changes, neuro-

degenerative diseases such as PD and AD present a fertile
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ground for unleashing the potential of cell-replacement

therapies and have generally been a success story. Although

the first grafting experiments with fetal DA neurons in PD

were performed already in the 1980s (Brundin et al., 1986;

Dunnett et al., 1981; reviewed in Barker et al., 2015; Stein-

beck et al., 2015), it was the advent of cell reprogramming

and advancements in neuronal differentiation protocols

(Chambers et al., 2009) that ledmore recently to an ‘‘explo-

sion’’ of xenografting studies (Doi et al., 2014; Gantner

et al., 2020; Grealish et al., 2014; Kikuchi et al., 2017; Kir-

keby et al., 2012; Kriks et al., 2011; Song et al., 2020; Stein-

beck et al., 2015; Xiong et al., 2021). All these studies were

transformative for the field mainly because of 3 key obser-

vations. First, they showed that iPSC can provide an unlim-

ited source for DA neurons, without the technical and

ethical complications of fetal tissue. Second, they provided

compelling evidence for efficient generation of mesence-

phalic DA neurons and enhanced our understanding of

cellular and molecular mechanisms of midbrain DA neu-

rons differentiation and integration into a disease-relevant

physiological environment. Third, they allowed us to

assess in vivo the suitability of cell-replacement therapy in

disease-relevant behaviors as it demonstrated that grafting

of iPSC-derived DA neurons reversed PD symptoms in ani-

malmodels, paving theway for large-scale clinical trials. All

these were recently exemplified by Studer and Tabar labs,

which developed a novel strategy to differentiate hPSCs

into midbrain DA neurons based on a two-step wingless-

related integration site (WNT) signaling activation to in-

crease scalability and purity of midbrain DA neurons and

reach clinical-scale production suitable for transplantation

(Kim et al., 2021). These efforts brought hESC-derived DA

neurons closer to clinical trials, by providing a large-scale,

cryopreserved DA neuron progenitor product with an

excellent toxicology profile and biodistribution readily

available for clinical studies (Piao et al., 2021).

Epilepsy

One of themost common and disabling neurological disor-

ders affecting all age groups, epilepsy is the result of imbal-

ances between excitation and inhibition causing abnormal

excessive or synchronous neuronal activity in the brain

(Jefferys, 1994; Matsumoto and Marsan, 1964; McCormick

and Contreras, 2001; Stafstrom and Carmant, 2015). The

International League Against Epilepsy (ILAE) defines epi-

lepsy as a group of disorders of the brain characterized by

the periodic and unpredictable occurrence of seizures

(Berg et al., 2010; Scheffer et al., 2017). Among many

different types, temporal lobe epilepsy (TLE) with hippo-

campal sclerosis is one of the most prevalent forms of focal

epilepsy. Data from patients indicate that this condition

starts in adolescence and is often associated with an initial

precipitating event during early childhood, such as febrile
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seizures, encephalitis, or brain trauma (Berg et al., 1999;

Hauser and Kurland, 1975; Hauser et al., 1993). On the

other hand, studies using brain tissue from patients with

drug-resistant focal epilepsy have shown that the most

common pathologic hallmark is hippocampal sclerosis

characterized by segmental loss of principal pyramidal neu-

rons, synaptic reorganization, and reactive astrogliosis

(Blumcke et al., 2017; Cavanagh and Meyer, 1956; Kim

et al., 1990; de Lanerolle et al., 1989; Margerison and Cor-

sellis, 1966; Sommer, 1880). Nevertheless, ex vivo ap-

proaches in humans cannot provide evidence on the origin

of pathological features, namely, if hippocampal sclerosis

and neuronal loss are caused by seizures alone or if the pri-

mary noxa is the triggering event and seizures occur as a

consequence of that, further exacerbating brain damage.

Therefore, the need for alternative experimental models

was and still is pressing.

Animal models have made, by far, the biggest contribu-

tion toward exploring the fundamental mechanisms of

the epileptogenic process, seizure generation, evolution

of brain damage, and discovery of antiepileptic drugs. Start-

ing in the late thirties, the first animal model of epilepsy

was used for testing the efficacy of anti-seizure compounds

(Putnam and Merritt, 1937). This was later followed by

additional animal models, in which the seizures were

induced either chemically or electrically and spontaneous

genetic models (Ben-Ari et al., 1979; Cavalheiro et al.,

1991; Goddard et al., 1969; Green and Sidman, 1962; Ri-

chards and Everett, 1946; Swinyard, 1949; Toman et al.,

1946; Vergnes et al., 1982). Progress in gene-editing tech-

niques led to the generation of induced genetic mouse

models that have been important for understanding the

molecular basis of neuronal circuit deficits and advance-

ment of therapeutic solutions (Jones and Baraban, 2007;

Wang et al., 2007; Yu et al., 2006). An example from our

ownwork illustrates the utility of animal models for under-

standing aspects of epilepsy pathophysiology that are not

possible in postmortem or in clinical setting. For many

years, epileptologists argued over the effect of seizure activ-

ity on the development of brain damage (de Curtis et al.,

2021). While some studies show that this is in fact true

for some types of convulsive status epilepticus (SE) (Gorter

et al., 2001; Pitkänen et al., 2002; Schwob et al., 1980),

recent evidence from animal studies has disputed this

notion and shows that in non-convulsive SE this is not

the case (Arabadzisz et al., 2005; Noè et al., 2019; Riban

et al., 2002; Vila Verde et al., 2021). Recently, Vila Verde

and colleagues showed that, in animal models of non-

convulsive SE triggered by the injection of chemiconvul-

sant kainic acid into the hippocampus, the secondary

spread of seizure activity to regions distant from the injec-

tion site does not cause detrimental changes in the brain.

However, when combinedwith a coexisting insult, seizures
can work synergistically to further exacerbate the damage

done by the underlying focal SE cause (Noè et al., 2019;

Vila Verde et al., 2021).

Although epilepsy animal models have high predictive

validity and have made crucial contributions to drug dis-

covery and understanding of disease mechanism, the spe-

cies-specific differences between humans and animals

in disease pathophysiology, including even the seizure

phenotype, remain (Bertram, 2007; Schauwecker, 2011).

Human-derived iPSCs and their neuronal derivatives

have been increasingly utilized to investigate mostly ge-

netic forms of epilepsy, including multisystemic neurode-

velopmental disorders with a strong epilepsy phenotype

such as Dravet syndrome (Kim et al., 2018; Liu et al.,

2016; Sun et al., 2016), tuberous sclerosis (Blair et al.,

2018; Winden et al., 2019; Zucco et al., 2018), Rett syn-

drome (Marchetto et al., 2010; Samarasinghe et al., 2021;

Tang et al., 2016), and other rare epilepsy syndromes

(Bershteyn et al., 2017; Negraes et al., 2021; Steinberg

et al., 2021; Uchida et al., 2017). Early studies with human

in vitro iPSCmodels validated some of the neuronal features

initially discovered using animal models in a strictly hu-

man background, namely altered neuronal morphology

including soma size, neurite outgrowth, synapse forma-

tion, dendritic spine length, altered spontaneous activity,

and ion current density (Higurashi et al., 2013; Jiao et al.,

2013; Liu et al., 2013), thereby greatly increasing the trans-

lational relevance of the findings. Dravet syndrome is an

early-onset refractory and devastating type of epilepsy typi-

cally caused by de novo heterozygous variants in SCN1A

gene. Liu and colleagues differentiated patient-derived

iPSCs into a mixed culture of pyramidal-shaped glutama-

tergic and bipolar-shaped GABAergic neurons and detected

higher sodium currents and hyperexcitability in both

neuronal subtypes (Liu et al., 2013), whereas others, de-

pending on the specific SCN1A mutation, have observed

deficits only in inhibitory neurons (Kim et al., 2018; Liu

et al., 2016; Sun et al., 2016), as also seen in mouse models

(Cheah et al., 2012; Rubinstein et al., 2015; Yu et al., 2006).

Using 3D brain organoid models Blair and colleagues ad-

dressed tuberous sclerosis disease variability and the forma-

tion of cortical dysplasias. In a series of elegant experiments

employing CRISPR-Cas9 techniques to generate constitu-

tive and conditional knockout (KO) cell lines, they pro-

vided evidence for the ‘‘second-hit’’ hypothesis of cortical

tuber formation and implicated specific cell population

in disease initiation (Blair et al., 2018). Brain organoids

were also utilized to examine neural oscillations in

Rett syndrome. Specifically, by combining two-photon

calcium imaging, extracellular recordings, and single-cell

transcriptomic profiling in fused dorsal-ventral forebrain

organoids, the authors revealed epileptiform-like activity

and neuronal hyperexcitability in patients’ organoids,
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phenotypes that could be rescued by treatment with a p53

inhibitor (Samarasinghe et al., 2021).

As seen from the aforementioned examples, in vitro

human cellular models have contributed tremendously to

our understanding of the pathophysiological basis underly-

ing human epilepsies andhave accelerated the development

of therapeutic drugs. Notwithstanding, iPSC-derivedmodels

suffer from elevated variability, inconsistent cellular compo-

sition, lack of non-neuronal cells (e.g., microglia), lack of

vascularization, and inaccessibility of behavioral readouts.

Some of these limitations could be overcome with xeno-

grafting models.

Human in vitro models, coupled with in vivo animal

models, advance epilepsy research one step closer to

finding therapeutic approaches that better fit the needs of

specific patients with different genetic backgrounds. In

addition to antiepileptic drugs and brain surgeries, stem

cell therapy is a viable option for the treatment of various

forms of epilepsy. Recent compelling evidence supporting

the therapeutic use of this method has been published,

and preclinical and clinical studies validated the use of dis-

ease-relevant cell types, including hippocampal precursor

cells, neural stem cells, and GABAergic and mesenchymal

cells, in ameliorating GABA-deficient firing pathways and

restoring neuronal circuitry function (Chu et al., 2004;

Cunningham et al., 2014; Lee et al., 2014; Upadhya et al.,

2016; Waldau et al., 2010; Waloschková et al., 2021; Xu

et al., 2019a; Zhu et al., 2023). In particular, Upadhya and

colleagues tested the potential of MGE-like interneuron

precursors derived from hiPSCs in alleviating TLE symp-

toms. Through the use of video-electroencephalographic

recordings and behavioral tests in a ratmodel, they showed

that xenografting of MGE-like precursors into the rat hip-

pocampus after SE greatly reduced spontaneous recurrent

seizures and improved cognitive, memory, and mood im-

pairments (Upadhya et al., 2019).

Likewise, interneurons derived from hPSC and grafted

into the brain ofmicemigrated extensively in order to inte-

grate with the host circuitry and remarkably, even before

fullymaturing electrophysiologically, were able to suppress

seizures and associated cognitive and behavioral deficits

(Cunningham et al., 2014). Other reports highlighted

the capability of GABAergic neurons derived from

neural stem cells in reducing the frequency and duration

of spontaneous recurrent seizures in chronically epileptic

rats following their grafting into hippocampi (Xu et al.,

2019a). Very recently, grafted human-derived GABAergic

cortical interneurons in mouse models exhibited long-

term efficacy in aborting seizures and ameliorating cogni-

tive deficits without the risk of over-inhibition regardless

of grafted neurons densities (Zhu et al., 2023). Although

compelling evidence supports the use of human stem cells

therapy for TLE and other forms of epilepsy, there are
776 Stem Cell Reports j Vol. 19 j 767–795 j June 11, 2024
studies that have shown contradictory results. For instance,

Anderson and colleagues discovered that, even though

grafted human cells integrate, mature, and differentiate

into GABAergic interneurons and become electrophysio-

logically active with mature firing patterns in the hippo-

campus, they do not suppress seizures (Anderson

et al., 2018).

Transplantation approaches of interneurons in epilepsy

seem to offer one of themost viable pathways for the devel-

opment of novel therapeutic solutions, especially in drug-

resistant patients. By reducing abnormal hyperexcitability

and most importantly the recurrent seizures, interneuron

cell-replacement therapy offers a better alternative to inva-

sive surgery and the associated side effects, thereby dramat-

ically improving quality of life and success rate (Backofen-

Wehrhahn et al., 2018; Cunningham et al., 2014; Upadhya

et al., 2019; Zhu et al., 2023). Nevertheless, major chal-

lenges remain, including the risk of tumor formation,

altering brain excitation-inhibition balance, and cell-type

heterogeneity of the graft (Amariglio et al., 2009; Anderson

et al., 2018; Roy et al., 2006; Zhu et al., 2023).

Down syndrome

Down syndrome (DS) is themost common genetic cause of

intellectual disability (ID), in which delayed and aberrant

brain development lead to varying degrees of neurological

and cognitive impairments (Down, 1995; Wilkins and

Brody, 1971). With a frequency of approximately 1 in

800 births, DS occurs in all populations and is caused by

a partial or complete trisomy of chromosome 21 (HSA21)

(de Graaf et al., 2017; Hattori et al., 2000; Lejeune et al.,

1959). Because gene expression is altered in all cells of the

body, individuals with DS manifest a plethora of pheno-

types including facial features, hearing and vision abnor-

malities, and cardiac and gastric malformations and have

a higher propensity for comorbid conditions, such as hypo-

thyroidism, autoimmune disorders, epilepsy, and demen-

tia (Dahle and McCollister, 1986; Freeman et al., 1998;

McCarron et al., 2014; Pueschel et al., 1991; Purdy et al.,

2014; Roizen et al., 1994). Despite the heterogeneity in dis-

ease severity and the neurological phenotypes, some of the

most common features observed in postmortem and clin-

ical studies are the reduced brain volume accompanied

with a smoother gyral appearance and condensed cortical

surface area (Ferrer and Gullotta, 1990; Kesslak et al.,

1994; Marin-Padilla, 1976; Patkee et al., 2020; Raz et al.,

1995; Wisniewski, 1990).

As with other neurodevelopmental disorders, animal

models have been instrumental in advancing our under-

standing of DS pathophysiology, in spite of themarked dif-

ferences in genetics and developmental trajectories be-

tween humans and animals. A key moment in the field of

DS was the advent of the Ts65Dn mouse model, which
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harbors a segmental trisomy of a portion ofmouse chromo-

some 16 with a syntenic region to HSA21 (Davisson et al.,

1990; Reeves et al., 1995). This mouse model was transfor-

mative for DS research as the simultaneous overexpression

of somany genes presented a bettermodel compared to the

laborious overexpression of single genes that was previ-

ously prevalent. Crucially, several phenotypic features

seen in DS patients are recapitulated to different extents

in the Ts65Dn mouse. For instance, Ts65Dn mice exhibit

locomotor hyperactivity and have deficits in tasks that

require integration of memory and visuospatial informa-

tion and show diminished cognitive flexibility that

worsens with age (Olmos-Serrano et al., 2016; Reeves

et al., 1995). Furthermore, Ts65Dn mouse model exhibits

adult-onset neurodegeneration (Granholm et al., 2000;

Holtzman et al., 1996) and increased production of APP

that is processed into soluble Ab40-42 (Hunter et al., 2003;

Seo and Isacson, 2005). Ts65Dn mouse model has contrib-

uted to uncovering the roles and functions of specific

HSA21 genes, including BRWD1, which is implicated in

hippocampal long-term potentiation (LTP) and memory

(Fulton et al., 2022), and OLIG1,2, the overexpression

of which causes neurogenesis defects and imbalances

in neuronal excitation/inhibition balance (Chakrabarti

et al., 2010). Over-inhibition is assumed to be an underly-

ing mechanism of intellectual disabilities associated with

DS, and the Ts65Dn mouse model served as a platform

for testing the efficacy of GABAA antagonists in reversing

cognitive impairments and neurophysiological defects

(Fernandez et al., 2007). Progress in genome engineering

enabled the development of more DS mouse models that

also recapitulate to varying degrees aspects of DS seen in

humans (Li et al., 2007; Sago et al., 1998; Yu et al., 2010).

Although mouse models made possible major advance-

ments in DS research, the differences in genetics between

mouse and human are insurmountable and this discor-

dance limits the suitability of animal models. Conse-

quently, there is the need for human experimental models

that contain the exact DS genomic rearrangements.

Evidence suggests that the brain of children with DS

develops differently (Baburamani et al., 2020; Contestabile

et al., 2007; Guidi et al., 2008; Larsen et al., 2008;

Stagni et al., 2020; SuetsuguandMehraein, 1980;Takashima

et al., 1981), andhiPSC-based in vitromodels are an ideal tool

for studying neurodevelopment. Studies using neurons

fromDSpatients have revealed alterations in synaptic activ-

ity and density, axonal transport and synaptic vesicle

cycling, and increased levels of Ab and tau phosphorylation

and have uncovered the roles of HSA21 genes such as APP,

DYRK1A, and BACE2 in these processes (Ali�c et al., 2021;

Lu et al., 2013; Ovchinnikov et al., 2018; Shi et al., 2012;

Weick et al., 2013;Wuet al., 2022). Interestingly,neurodeve-

lopmental disease-relevant molecular alterations could be
evident even in iPSC stage as we showed (Adamo et al.,

2015) or in unrelated cellular populations such as fibro-

blasts. To study the protein landscape and turnover due to

trisomy, Liu and colleagues compared DS fibroblasts with

those from controls using sequential window acquisition

of all theoretical fragment ion spectra (SWATH) mass spec-

trometry and revealed a DS-specific phenotype related to

mitochondrial protein downregulation (Liu et al.,

2017). Strikingly, the mitochondrial defects phenotype

was recently replicated in DS patient-derived GABAergic

neuronal cultures and MGE organoids (Xu et al., 2022).

Instead, Meharena and colleagues targeted iPSC-derived

neural progenitors fromDSpatients to reveal global changes

related toT21. Specifically, theycombinedhigh-throughput

chromosome conformation capture (Hi-C), assay for trans-

posase-accessible chromatin using sequencing (ATAC-seq),

and transcriptomic profiling to reveal global loss of chro-

matin accessibility, long-range chromatin interactions,

andoxidative stress consistentwith senescent cells. Interest-

ingly, treatment with a cocktail of senolytic drugs amelio-

rated deficits in transcriptional regulation, proliferation,

and cellular migration (Meharena et al., 2022).

The use of 3D brain organoids models is becoming

increasingly relevant for the study of neurodevelopment

generally and DS specifically, mainly because they recapit-

ulate salient aspects of brain development (Kelley and

Paș;ca, 2022). For instance, the use of iPSC-derived cerebral

organoids from patients enabled Tang and colleagues to

reveal differences in the shape and size of DS organoids

probably due to impairments in neurogenesis as shown

by diminished proliferation and decreased expression of

layer II and IV markers in cortical neurons, underscoring

cerebral organoids as valuable in vitro models (Tang et al.,

2021). Besides having a reduced number of neurons, it

has been documented using human studies that DS brains

have nearly twice as many astrocytes compared with age-

matched controls (Griffin et al., 1998; Mito and Becker,

1993; Zdaniuk et al., 2011). These deficits in cell lineage

ratio are likely to cause impairments in dendritic arboriza-

tion, synaptogenesis, and synaptic plasticity, since astro-

cytes modulate and sustain these vital neuronal functions

through the expression and/or release of various neuroac-

tive molecules. Recent studies have identified astrocytes

as potential targets to alleviate DS symptoms as different

labs have reported that iPSC-derived astrocytes i) are critical

for controlling synaptogenesis andmTOR pathway (Araujo

et al., 2018), ii) display genome-wide perturbations in gene

expression, an altered cell adhesion profile, and increased

cellular motility and dynamics (Ponroy Bally et al., 2020),

and iii) regulate aberrant astrocyte proliferation observed

in DS (Kawatani et al., 2021).

To harness the potential of xenografting approaches and

validate the key role of astrocytes in DS pathophysiology,
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iPSC-derived astrocytes were grafted into the lateral ventri-

cles of neonatal mice brains (Chen et al., 2014). Grafted

astrocytes integrated into the host neuronal circuits and

critically, through the release of neuroactive molecules,

modulated endogenous neurogenesis and cell prolifera-

tion. Likewise, Real and colleagues grafted patient iPSC-

derived neurons and used single-cell-resolution intravital

microscopy to gain insights into the dynamics of neuronal

pruning, synaptogenesis, and network activity during the

earliest stages of cortical development. Grafted cortical

excitatory neurons from both control and DS groups

exhibited axonal outgrowth, dendrite pruning, and

functional connections with host neurons. However,

only DS-derived neurons demonstrated higher dendritic

spine stabilitymarked by a decrease in dendritic spine turn-

over, which led to a reduction in network activity (Real

et al., 2018). To elucidate the mechanisms underlying

the GABAergic dysfunction observed in DS, Huo and col-

leagues observed cellular and migration deficits and a

reduction in the number of cortical interneurons. The

interneuron migration deficit was present also following

the grafting of DS interneurons in the medial septum of

mice, suggesting that the reduced cortical interneuron

number may be a result of deficits in migration (Huo

et al., 2018). In contrast, following grafting of DS pa-

tients-derived brain organoids into the mouse brain, Xu

et al. demonstrated that upregulated expression of OLIG2

in DS neural progenitors causes overproduction of sub-

class-specific GABAergic interneurons and that reduction

of OLIG2 expression improved recognition memory and

interneuron differentiation (Xu et al., 2019c). This contra-

diction regarding the number of GABAergic interneurons

in DS could have been resolved by quantifying specific

populations of interneuron subtype (e.g., calretinin+, cal-

bindin+), as HSA21 genes could differentially affect the

production of specific interneuron subtypes. As shown

earlier, DS has been associated with cellular senescence

(Meharena et al., 2022). Jin and colleagues combined mi-

croglia-containing brain organoids and mouse chimeras

to show that senescence also affects non-neuronal micro-

glia. Specifically, following the derivation of microglia

from DS iPSC, they dissected microglia function in micro-

glia-containing organoids following microglia grafting

in the neonatal mouse brain. Microglia exhibited an

enhanced synaptic pruning, which in turn affected the

synaptic neurotransmission. Following exposure to hu-

man-derived tau, engrafted microglia underwent cellular

senescence, which was rescued upon the specific downre-

gulation of HSA21 gene IFNAR (Jin et al., 2022).

As with other brain diseases, 2D and 3D patient-derived

in vitro models made it possible to identify DS phenotypes

specifically due to the chromosomal abnormality and the

affected genes, which was not possible previously in ani-
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mal models, also because animal and human genomes do

not always align. As a matter of fact, Ts65Dn gold standard

mouse model contains an additional 45 protein-coding

genes that are not present in patients. Critically, those

genes are important for neurodevelopment (Guedj et al.,

2023), which questions the validity of the model and

might explain why promising treatments in the mouse

were met with disappointment in clinical trials (https://

clinicaltrials.gov/, reviewed in Lee et al., 2020). In contrast,

the integration of animal models with human in vitro

models often leads to a more complete understanding of

disease pathophysiology because it enables the interroga-

tion and validation of DS-specific cellular and molecular

phenotypes in their physiological milieu and their impact

on behavioral readouts, respectively. Hereby, xenografting

approaches combine the fidelity of patient-specific cellular

models that leads to a better understanding of disease path-

ophysiology with an experimental platform that acceler-

ates the identification, screening, and efficacy assessment

of novel drug compounds.

Schizophrenia

The general consensus indicates that schizophrenia (SCZ)

is a neurodevelopmental disorder that manifests in

late adolescence, but a prodromal phase is already evident

in childhood. A prevalent brain disorder, SCZ, features

episodes of psychosis, hallucinations, and disorganized

thinking (positive symptoms), invariably coupled to blunt-

ed affect, anhedonia, and asociality (negative symptoms)

(Bleuler, 1950; Hulshoff Pol et al., 2000; Murray and Lewis,

1988; St Clair et al., 2005; Susser and Lin, 1992).

Most of our neurobiological insights in SCZ are the re-

sults of decades of research in animal models. Rodent

models have been instrumental for increasing our under-

standing of genetics contribution to SCZ, environmental

risk factors, and brain and behavioral abnormalities associ-

atedwith SCZ in humans (Abazyan et al., 2010; Brody et al.,

2004; Geyer et al., 1993; Liang et al., 2022; Ma et al., 2013;

Mätlik et al., 2022;Moghaddam et al., 1997). An illustrative

example that emphasizes the advantages of xenografting

approaches over animal models is the dopamine hyperac-

tivity in the mesolimbic system hypothesis of SCZ

(Toda and Abi-Dargham, 2007). Work in rodent models

has revealed that loss of GABAergic activity in ventral

hippocampus drives the increased dopamine signaling in

the mesolimbic system and that restoration of aberrant

hippocampal activity with pharmacological manipulation

or deep brain stimulation reverses SCZ-like phenotypes in

rodent models (Boley et al., 2014; Lodge and Grace, 2007;

Perez et al., 2013). Despite the key contributions derived

from animal models, a direct link between the putative

reduced GABAergic activity in the hippocampus triggering

aberrant dopamine signaling and SCZ-relevant behavioral

https://clinicaltrials.gov/
https://clinicaltrials.gov/
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alterations was lacking. Consequently, the grafting of

mouse ESC or MGE-derived rat’s interneurons into the

hippocampus of a rat SCZ model restored both aberrant

GABAergic and DA activity in hippocampus and ventral

tegmental area, respectively. Importantly, the grafts

rescued deficits in social interaction and cognitive flexi-

bility underscoring the edge of graft-based models in

modeling complex neuropsychiatric disorders (Donegan

et al., 2017; Perez and Lodge, 2013).

In the last decade, human cell-based in vitro models—

owing to their human genetic background—have elucidated

important aspects of SCZ cellular and molecular underpin-

nings that so far were not possible in animal models. Pa-

tients’ fibroblasts were reprogrammed into iPSC and then

differentiated into neurons or assembled into brain organo-

ids. A comprehensive analysis of neurons revealed reduc-

tions in neuronal connectivity, neurite outgrowth, and syn-

aptic proteins along with altered gene expression related to

WNT signaling, mitochondrial function, and excitatory/

inhibitory balance (Brennand et al., 2011; Kathuria et al.,

2020; Ni et al., 2020). Remarkably, many of the disease phe-

notypes were amenable to treatmentwith common antipsy-

chotic medication (Brennand et al., 2011), highlighting the

translational potential of cellular models. Likewise, patient-

derived iPSC models were successfully employed to study

even predisposition to cellular defects associated with SCZ.

In particular, transcriptomic analysis of neural progenitors

derived from patient iPSC uncovered altered gene expres-

sion in cytoskeletal remodeling and oxidative stress,

predictive of defects in progenitors’ migration and cellular

metabolism, respectively. As predicted, neural progenitors

exhibited defects in migration and elevated oxidative stress

(Brennand et al., 2015). The advent ofCRISPR-Cas9 gene-ed-

iting technologies enabled an elegant dissection of the

contribution of SCZ common variants and top candidate

genes onneuronal function. Theuse ofCRISPRa/i to upregu-

late or repress the endogenous expression of top SCZ genes

in patient-derived neurons revealed specific effects on pre-

and postsynaptic neuronal domains and genotype-specific

transcriptional alterations, while combinatorial gene pertur-

bations uncovered convergence on synaptic physiology and

synergies between SCZ risk variants (Schrode et al., 2019).

Microglia have emerged as a critical population of

CNS cells with important roles in SCZ pathophysiology.

Their contribution was highlighted using patient-derived

neuronal cultures. Human monocyte-derived microglia-

like cells promoted excessive synaptic pruning when co-

cultured with SCZ patient-derived neurons, reminiscent

of reduced synaptic density found in postmortem SCZ

brain tissue (Sellgren et al., 2019). Intriguingly, treatment

with antibiotic minocycline normalizedmicroglia-induced

synapse elimination and was associated with a decreased

SCZ incidence in high-risk individuals, suggesting that tar-
geting synaptic pruning could be a viable treatment option

for SCZ (Sellgren et al., 2019). More recently, activated mi-

croglia co-cultured with SCZ patient-derived inhibitory in-

terneurons—a neuronal population affected in SCZ—

caused a range of metabolic deficits in the latter, including

mitochondrial dysfunction and further impairments in

neuronal arborization, synaptogenesis, and GABA release.

In contrast to interneurons from control individuals, the

metabolic deficits persisted in interneurons from SCZ pa-

tients long after the removal of the inflammatory stimulus,

providing evidence for synergies between SCZ genetic pre-

disposition and environmental risk factors (Park et al.,

2020). Although the aforementioned studies provided

strong evidence for the key role of neuroglia in SCZ-associ-

ated pathology, demonstrating a causative role between

neuroglia defects and SCZ onset requires validation in dis-

ease-relevant in vivomodels. In that regard, iPSCs from chil-

dren with SCZ were differentiated into glia progenitor cells

in vitro and subsequently xenografted into neonatal mice.

In addition to deficits in glial cortical migration, astrocytic

maturation, and hypomyelination, grafted mice exhibited

excessive anxiety, sociality defects, and sleep disturbances,

providing direct evidence for a causative role between

glial maturation and development of SCZ (Windrem

et al., 2017).

As with other complex brain disorders, grafting ap-

proaches in SCZ bridged the gap between cellular mecha-

nisms that were initially revealed in iPSC cellular models

and their specific impact on disease-relevant behavioral

alterations, which is possible only in animal models.

Furthermore, grafting approaches in SCZ provided an

experimental platform to test disease-relevant experi-

mental hypotheses (Perez and Lodge, 2013) and uncovered

a key role for neuroglia in the onset of SCZ (Windrem et al.,

2017). All these major advancements would not have been

possible neither with animal models nor with cellular

models alone. Notably, iPSC-based neuronal cultures lack

behavioral readouts, which makes it impossible to causa-

tively link cellular phenotypes with the disease, while ani-

mal models have limited construct and face validity.
INTEGRATING XENOGRAFTING APPROACH WITH

TECHNOLOGICAL ADVANCEMENTS

Finally, building on the enabling edges recounted earlier in

bridging disease modeling across the in vitro/in vivo gap,

xenografting can now be envisioned as a unique experi-

mental platform to integrate recent technological break-

throughs spanning methods that enable cellular, molecu-

lar, and functional analysis; drug development; and

personalized medicine into the disease modeling pipeline

of the brain and its pathologies (Figure 3). In that regard,
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Figure 3. Integrating xenografting with methodological and technological advancements
Owing to its versatility, xenografting can be integrated with cutting-edge technologies enabling the molecular and functional analysis of
brain disorders and accelerating the development of efficient medications for personalized medicine.
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some prominent examples include the report of a proof-of-

concept approach to target noninvasively with unprece-

dented precision deep brain tissue by application of electro-

magnetic fields of different frequencies (Grossman et al.,

2017). The approach was validated in a behaving mouse

by modulating the firing properties of deep hippocampal

neurons, while sparing the overlying tissue. Besides its ma-

jor implications for the treatment of neurological and

neuropsychiatric diseases (Lozano, 2017), noninvasive

neuromodulation opens new frontiers for unraveling

neuronal circuit formation and function. We envisage a

scenario in which, following engraftment of in vitro-gener-

ated 2D or 3D neuronal tissue, we would be able to target

with high precision either the whole graft or parts of it,

while sparing the surrounding tissue and elucidate how

the graft integrates within the endogenous circuits and

modulates behavior and function (Linaro et al., 2019) in

real time. An alternative which enables cell-type specificity
780 Stem Cell Reports j Vol. 19 j 767–795 j June 11, 2024
and unprecedented high throughput is the advent of all-

optical electrophysiology. The combination of novel chan-

nelrhodopsin variants (CheRiff) with exquisite light sensi-

tivity with rapid membrane voltage indicators (QuasAr)

and near-infrared fluorescence mounted into a single co-

expression vector (Optopatch) enables the simultaneous

stimulation and recording of neurons (Hochbaum et al.,

2014) without the need for the classical yet laborious

and time-consuming patch-clamp electrophysiology. This

powerful technique was validated in vitro by high-

throughput functional characterization of iPSC-derived

amyotrophic lateral sclerosis motor neurons (Kiskinis

et al., 2018) andmore recently in vivo for dissecting cortical

layer 1 local neural circuits roles and functioning in sensory

integration (Fan et al., 2020). Only now can we start inte-

grating xenografting of healthy or diseased iPSC-derived

neuronal models with all-optical electrophysiology for

high-throughput tracing of graft maturation, circuit
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formation and modulation, and their real-time impact on

behavior and cognition.

Major advances in single-cell-omics approaches including

proteome sequencing at single-amino-acid resolution (Al-

faro et al., 2021; Brinkerhoff et al., 2021) have afforded an

unprecedented view on cell diversity, heterogeneity,

and function; however, these technologies lack spatial infor-

mation. Recent developments in spatial transcriptomics

and mass spectrometry imaging promise to overcome

these drawbacks by uncovering the spatial information of

mRNA, peptides, andmetabolites (Caprioli, 2019; Rodriques

et al., 2019; Ståhl et al., 2016), thusushering ina comprehen-

sive, global viewof themolecularmechanisms inhealth and

disease.Moreover,wehave theopportunity tocombine tran-

scriptional profiling with neuronal connectomics such as in

Connect-seq where neuronal viral tracing and single-cell

RNA sequencing go hand in hand to reveal the molecules

that establish and modulate neural circuitries formation

and their functioning (Hanchate et al., 2020). All these tech-

nological advancements allow us to design experiments in

which in vitro-generated neural models and their engraft-

ment into the brain of animal models will enable us to

examine the transcriptional and proteomic profile of grafted

single neurons, visualize the location of this activity, and

track how this activity establishes the neuronal connections

that sustain behavior. Through these approaches, xenograft-

ing becomes thus the experimental conduit to translate the

repertoire of in vitro-generated human neuronal identities

(resolved at single-cell-omics detail) into in vivo functions

(by selectively targeting and manipulating them in vivo) to

gain insights about behavior, cognition, and neuronal

plasticity.
CONCLUSION

A great deal of what we know about the brain and its func-

tion derives from the study of animal models, which has

been and still is indispensable for insights on behavior,

cognition, drug development, and disease pathophysi-

ology. However, animal models are not human and despite

many conserved cellular and molecular processes the spe-

cies-specific differences have limited their use. On the

other hand, in vitro neural models, owing to their reduc-

tionistic nature, have been instrumental for improving

our understanding of molecular mechanisms of neuronal

differentiation and cellular fate decisions. Notwith-

standing its advantages, reductionism is a double-edged

sword as it is not compatible with the complexity and the

intricate functions of the brain. Furthermore, despite prog-

ress in neuronalmedia composition and neuronal differen-

tiation protocols, in vitro neurons do not reach full matura-

tion, lack key nutrients and signals provided by other brain
cell types, are devoid of sensory input, and finally do not

allow assessment of ‘‘face validity’’ which is key for neuro-

psychiatric disordersmodeling (Pașca, 2024). In an attempt

to harness the best of both worlds, scientists have xeno-

grafted in vitro-generated human neural models into the

brains of animal models (e.g., rodents). Advantages of xen-

ografting approaches can be categorized into 3 specific do-

mains: i) optimization of human in vitro cellular models as

they enable the advanced maturation of neurons vis-à-vis

in vitro cultures, ii) provision of an advanced platform for

drug testing by bridging the gap between the need for hu-

man models and the importance of assessing the impact

of novel compounds on functioning neuronal circuits

and behavioral readouts and disease mechanisms in vivo,

and iii) becoming a stepping stone for the advancement

of cell-replacement therapies toward clinical trials (Pașca,
2024). Here we provided a systematic account of few para-

digmatic yet common neuropsychiatric and neurological

disorders, and most importantly the juxtaposition of find-

ings derived from purely in vitro, in vivo, and xenografting

approaches clearly highlights the edge offered by the latter.

The integration of xenografting approaches with unique

cutting-edge technologies brings their utility to a new

dimension and affords the optimism that interrogation of

previously untenable aspects of brain physiology becomes

now the benchmark in the field of modern human

neurobiology.
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Z.Y., Saw, T.Y., Tan, C.-P., Lokman, H., et al. (2016). Midbrain-like

Organoids from Human Pluripotent Stem Cells Contain Func-

tional Dopaminergic and Neuromelanin-Producing Neurons.

Cell Stem Cell 19, 248–257. https://doi.org/10.1016/j.stem.2016.

07.005.

Jones, D.L., and Baraban, S.C. (2007). Characterization of Inhibi-

tory Circuits in the Malformed Hippocampus of Lis1 Mutant

Mice. J. Neurophysiol. 98, 2737–2746. https://doi.org/10.1152/

jn.00938.2007.

Jucker, M. (2010). The benefits and limitations of animal models

for translational research in neurodegenerative diseases. Nat.

Med. 16, 1210–1214. https://doi.org/10.1038/nm.2224.

Kathuria, A., Lopez-Lengowski, K., Jagtap, S.S., McPhie, D., Perlis,

R.H., Cohen, B.M., and Karmacharya, R. (2020). Transcriptomic

Landscape and Functional Characterization of Induced Pluripo-

tent Stem Cell-Derived Cerebral Organoids in Schizophrenia.

JAMA Psychiatr. 77, 745–754. https://doi.org/10.1001/jamapsy-

chiatry.2020.0196.

Kawatani, K., Nambara, T., Nawa,N., Yoshimatsu,H., Kusakabe, H.,

Hirata, K., Tanave, A., Sumiyama, K., Banno, K., Taniguchi, H.,

et al. (2021). A human isogenic iPSC-derived cell line panel iden-

tifies major regulators of aberrant astrocyte proliferation in

Down syndrome. Commun. Biol. 4, 730–745. https://doi.org/10.

1038/s42003-021-02242-7.

Kelley, K.W., and Pașca, S.P. (2022). Human brain organogenesis:

Toward a cellular understanding of development and disease.

Cell 185, 42–61. https://doi.org/10.1016/j.cell.2021.10.003.

Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O.,

Dvir-Szternfeld, R., Ulland, T.K., David, E., Baruch, K., Lara-Astaiso,

D., Toth, B., et al. (2017). A UniqueMicroglia Type Associated with

Restricting Development of Alzheimer’s Disease. Cell 169, 1276–

1290.e17. https://doi.org/10.1016/j.cell.2017.05.018.

Kesslak, J.P., Nagata, S.F., Lott, I., and Nalcioglu, O. (1994). Mag-

netic resonance imaging analysis of age-related changes in the

brains of individuals with Down’s syndrome. Neurology 44,

1039–1045. https://doi.org/10.1212/wnl.44.6.1039.
Khachaturian, Z.S. (1985). Diagnosis of Alzheimer’s disease. Arch.

Neurol. 42, 1097–1105. https://doi.org/10.1001/archneur.1985.

04060100083029.

Kikuchi, T.,Morizane, A., Doi, D.,Magotani,H., Onoe,H., Hayashi,

T., Mizuma, H., Takara, S., Takahashi, R., Inoue, H., et al. (2017).

Human iPS cell-derived dopaminergic neurons function in a pri-

mate Parkinson’s disease model. Nature 548, 592–596. https://

doi.org/10.1038/nature23664.

Kim, H., Park, H.J., Choi, H., Chang, Y., Park, H., Shin, J., Kim, J.,

Lengner, C.J., Lee, Y.K., and Kim, J. (2019). Modeling G2019S-

LRRK2 Sporadic Parkinson’s Disease in 3D Midbrain Organoids.

Stem Cell Rep. 12, 518–531. https://doi.org/10.1016/j.stemcr.

2019.01.020.

Kim, H.W., Quan, Z., Kim, Y.-B., Cheong, E., Kim, H.D., Cho, M.,

Jang, J., Yoo, Y.R., Lee, J.S., Kim, J.H., et al. (2018). Differential ef-

fects on sodium current impairments by distinct SCN1Amutations

in GABAergic neurons derived from Dravet syndrome patients.

Brain Dev. 40, 287–298. https://doi.org/10.1016/j.braindev.2017.

12.002.

Kim, J.H., Guimaraes, P.O., Shen, M.Y., Masukawa, L.M., and

Spencer, D.D. (1990). Hippocampal neuronal density in temporal

lobe epilepsy with and without gliomas. Acta Neuropathol. 80,

41–45. https://doi.org/10.1007/BF00294220.

Kim, T.W., Piao, J., Koo, S.Y., Kriks, S., Chung, S.Y., Betel, D., Socci,

N.D., Choi, S.J., Zabierowski, S., Dubose, B.N., et al. (2021).

Biphasic Activation of WNT Signaling Facilitates the Derivation

of Midbrain Dopamine Neurons from hESCs for Translational

Use. Cell Stem Cell 28, 343–355.e5. https://doi.org/10.1016/j.

stem.2021.01.005.

Kirkeby, A., Grealish, S., Wolf, D.A., Nelander, J., Wood, J., Lund-

blad, M., Lindvall, O., and Parmar, M. (2012). Generation of

regionally specified neural progenitors and functional neurons

from human embryonic stem cells under defined conditions.

Cell Rep. 1, 703–714. https://doi.org/10.1016/j.celrep.2012.

04.009.

Kiskinis, E., Kralj, J.M., Zou, P., Weinstein, E.N., Zhang, H., Tsioras,

K.,Wiskow, O., Ortega, J.A., Eggan, K., and Cohen, A.E. (2018). All-

Optical Electrophysiology for High-Throughput Functional Char-

acterization of a Human iPSC-Derived Motor Neuron Model of

ALS. Stem Cell Rep. 10, 1991–2004. https://doi.org/10.1016/j.

stemcr.2018.04.020.

Kitada, T., Tong, Y., Gautier, C.A., and Shen, J. (2009). Absence of

nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout

mice. J. Neurochem. 111, 696–702. https://doi.org/10.1111/j.

1471-4159.2009.06350.x.

Kondo, T., Asai, M., Tsukita, K., Kutoku, Y., Ohsawa, Y., Sunada, Y.,

Imamura, K., Egawa, N., Yahata, N., Okita, K., et al. (2013).

Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes

associated with intracellular Ab and differential drug responsive-

ness. Cell Stem Cell 12, 487–496. https://doi.org/10.1016/j.stem.

2013.01.009.

Krencik, R., Weick, J.P., Liu, Y., Zhang, Z.-J., and Zhang, S.-C.

(2011). Specification of transplantable astroglial subtypes fromhu-

man pluripotent stem cells. Nat. Biotechnol. 29, 528–534. https://

doi.org/10.1038/nbt.1877.
Stem Cell Reports j Vol. 19 j 767–795 j June 11, 2024 787

https://doi.org/10.1038/ncomms3196
https://doi.org/10.1093/hmg/ddt275
https://doi.org/10.1093/hmg/ddt275
https://doi.org/10.1016/j.stem.2022.06.007
https://doi.org/10.1016/j.stem.2022.06.007
https://doi.org/10.1016/j.stem.2016.07.005
https://doi.org/10.1016/j.stem.2016.07.005
https://doi.org/10.1152/jn.00938.2007
https://doi.org/10.1152/jn.00938.2007
https://doi.org/10.1038/nm.2224
https://doi.org/10.1001/jamapsychiatry.2020.0196
https://doi.org/10.1001/jamapsychiatry.2020.0196
https://doi.org/10.1038/s42003-021-02242-7
https://doi.org/10.1038/s42003-021-02242-7
https://doi.org/10.1016/j.cell.2021.10.003
https://doi.org/10.1016/j.cell.2017.05.018
https://doi.org/10.1212/wnl.44.6.1039
https://doi.org/10.1001/archneur.1985.04060100083029
https://doi.org/10.1001/archneur.1985.04060100083029
https://doi.org/10.1038/nature23664
https://doi.org/10.1038/nature23664
https://doi.org/10.1016/j.stemcr.2019.01.020
https://doi.org/10.1016/j.stemcr.2019.01.020
https://doi.org/10.1016/j.braindev.2017.12.002
https://doi.org/10.1016/j.braindev.2017.12.002
https://doi.org/10.1007/BF00294220
https://doi.org/10.1016/j.stem.2021.01.005
https://doi.org/10.1016/j.stem.2021.01.005
https://doi.org/10.1016/j.celrep.2012.04.009
https://doi.org/10.1016/j.celrep.2012.04.009
https://doi.org/10.1016/j.stemcr.2018.04.020
https://doi.org/10.1016/j.stemcr.2018.04.020
https://doi.org/10.1111/j.1471-4159.2009.06350.x
https://doi.org/10.1111/j.1471-4159.2009.06350.x
https://doi.org/10.1016/j.stem.2013.01.009
https://doi.org/10.1016/j.stem.2013.01.009
https://doi.org/10.1038/nbt.1877
https://doi.org/10.1038/nbt.1877


Stem Cell Reports
Review
Kriks, S., Shim, J.-W., Piao, J., Ganat, Y.M., Wakeman, D.R., Xie, Z.,

Carrillo-Reid, L., Auyeung, G., Antonacci, C., Buch, A., et al.

(2011). Dopamine neurons derived fromhumanES cells efficiently

engraft in animal models of Parkinson’s disease. Nature 480, 547–

551. https://doi.org/10.1038/nature10648.

LaFerla, F.M., and Green, K.N. (2012). AnimalModels of Alzheimer

Disease. Cold Spring Harb. Perspect. Med. 2, a006320. https://doi.

org/10.1101/cshperspect.a006320.

Lambert, M.P., Barlow, A.K., Chromy, B.A., Edwards, C., Freed, R.,

Liosatos, M., Morgan, T.E., Rozovsky, I., Trommer, B., Viola, K.L.,

et al. (1998). Diffusible, nonfibrillar ligands derived from

Abeta1-42 are potent central nervous system neurotoxins. Proc.

Natl. Acad. Sci. USA 95, 6448–6453. https://doi.org/10.1073/

pnas.95.11.6448.

Lancaster, M.A., Renner, M., Martin, C.-A., Wenzel, D., Bicknell,

L.S., Hurles, M.E., Homfray, T., Penninger, J.M., Jackson, A.P., and

Knoblich, J.A. (2013). Cerebral organoids model human brain

development and microcephaly. Nature 501, 373–379. https://

doi.org/10.1038/nature12517.

de Lanerolle, N.C., Kim, J.H., Robbins, R.J., and Spencer, D.D.

(1989). Hippocampal interneuron loss and plasticity in human

temporal lobe epilepsy. Brain Res. 495, 387–395. https://doi.org/

10.1016/0006-8993(89)90234-5.

Laperle, A.H., Sances, S., Yucer, N., Dardov, V.J., Garcia, V.J., Ho, R.,

Fulton, A.N., Jones,M.R., Roxas, K.M., Avalos, P., et al. (2020). iPSC

modeling of young-onset Parkinson’s disease reveals a molecular

signature of disease and novel therapeutic candidates. Nat. Med.

26, 289–299. https://doi.org/10.1038/s41591-019-0739-1.

Larsen, K.B., Laursen, H., Graem, N., Samuelsen, G.B., Bogdanovic,

N., and Pakkenberg, B. (2008). Reduced cell number in the neocor-

tical part of the human fetal brain in Down syndrome. Ann. Anat.

190, 421–427. https://doi.org/10.1016/j.aanat.2008.05.007.

Lee, H., Yun, S., Kim, I.-S., Lee, I.-S., Shin, J.E., Park, S.C., Kim,W.-J.,

and Park, K.I. (2014). Human fetal brain-derived neural stem/pro-

genitor cells grafted into the adult epileptic brain restrain seizures

in rat models of temporal lobe epilepsy. PLoS One 9, e104092.

https://doi.org/10.1371/journal.pone.0104092.

Lee, J.H., Han, J.-H., Kim, H., Park, S.M., Joe, E.-H., and Jou, I.

(2019). Parkinson’s disease-associated LRRK2-G2019S mutant

acts through regulation of SERCA activity to control ER stress in as-

trocytes. Acta Neuropathol. Commun. 7, 68. https://doi.org/10.

1186/s40478-019-0716-4.

Lee, S.E., Duran-Martinez, M., Khantsis, S., Bianchi, D.W., and

Guedj, F. (2020). Challenges and Opportunities for Translation of

Therapies to Improve Cognition in Down Syndrome. Trends

Mol. Med. 26, 150–169. https://doi.org/10.1016/j.molmed.2019.

10.001.

Lee, Y., Stevens, D.A., Kang, S.-U., Jiang, H., Lee, Y.-I., Ko, H.S.,

Scarffe, L.A., Umanah, G.E., Kang, H., Ham, S., et al. (2017).

PINK1 Primes Parkin-Mediated Ubiquitination of PARIS in Dopa-

minergic Neuronal Survival. Cell Rep. 18, 918–932. https://doi.

org/10.1016/j.celrep.2016.12.090.

Lejeune, J., Gautier, M., and Turpin, R. (1959). [Study of somatic

chromosomes from 9 mongoloid children]. C. R. Hebd. Seances

Acad. Sci. 248, 1721–1722.
788 Stem Cell Reports j Vol. 19 j 767–795 j June 11, 2024
Levin, B.E., Llabre, M.M., and Weiner, W.J. (1989). Cognitive im-

pairments associated with early Parkinson’s disease. Neurology

39, 557–561. https://doi.org/10.1212/wnl.39.4.557.

Lewis, J., Dickson, D.W., Lin, W.L., Chisholm, L., Corral, A., Jones,

G., Yen, S.H., Sahara, N., Skipper, L., Yager, D., et al. (2001).

Enhanced neurofibrillary degeneration in transgenicmice express-

ing mutant tau and APP. Science 293, 1487–1491. https://doi.org/

10.1126/science.1058189.

Li, J., Pan, L., Pembroke, W.G., Rexach, J.E., Godoy, M.I., Condro,

M.C., Alvarado, A.G., Harteni, M., Chen, Y.-W., Stiles, L., et al.

(2021). Conservation and divergence of vulnerability and responses

to stressors between human and mouse astrocytes. Nat. Commun.

12, 3958. https://doi.org/10.1038/s41467-021-24232-3.

Li, Y., Liu, W., Oo, T.F., Wang, L., Tang, Y., Jackson-Lewis, V., Zhou,

C., Geghman, K., Bogdanov, M., Przedborski, S., et al. (2009).

Mutant LRRK2(R1441G) BAC transgenicmice recapitulate cardinal

features of Parkinson’s disease. Nat. Neurosci. 12, 826–828. https://

doi.org/10.1038/nn.2349.

Li, Z., Yu, T., Morishima,M., Pao, A., LaDuca, J., Conroy, J., Nowak,

N.,Matsui, S.-I., Shiraishi, I., andYu, Y.E. (2007). Duplication of the

entire 22.9 Mb human chromosome 21 syntenic region on mouse

chromosome 16 causes cardiovascular and gastrointestinal abnor-

malities. Hum. Mol. Genet. 16, 1359–1366. https://doi.org/10.

1093/hmg/ddm086.

Liang, W., Hou, Y., Huang, W., Wang, Y., Jiang, T., Huang, X.,

Wang, Z., Wu, F., Zheng, J., Zhang, J., et al. (2022). Loss of schizo-

phrenia-related miR-501-3p in mice impairs sociability and mem-

ory by enhancing mGluR5-mediated glutamatergic transmission.

Sci. Adv. 8, eabn7357. https://doi.org/10.1126/sciadv.abn7357.

Liao, M.-C., Muratore, C.R., Gierahn, T.M., Sullivan, S.E., Srikanth,

P., De Jager, P.L., Love, J.C., and Young-Pearse, T.L. (2016). Single-

Cell Detection of Secreted Ab and sAPPa from Human IPSC-

Derived Neurons and Astrocytes. J. Neurosci. 36, 1730–1746.

https://doi.org/10.1523/JNEUROSCI.2735-15.2016.

Liddelow, S.A., Guttenplan, K.A., Clarke, L.E., Bennett, F.C., Boh-

len, C.J., Schirmer, L., Bennett, M.L., Münch, A.E., Chung, W.-S.,

Peterson, T.C., et al. (2017). Neurotoxic reactive astrocytes are

induced by activated microglia. Nature 541, 481–487. https://

doi.org/10.1038/nature21029.

Lin, Y.-T., Seo, J., Gao, F., Feldman, H.M., Wen, H.-L., Penney, J.,

Cam, H.P., Gjoneska, E., Raja, W.K., Cheng, J., et al. (2018).

APOE4 Causes Widespread Molecular and Cellular Alterations

Associated with Alzheimer’s Disease Phenotypes in Human iPSC-

Derived Brain Cell Types. Neuron 98, 1141–1154.e7. https://doi.

org/10.1016/j.neuron.2018.05.008.

Linaro, D., Vermaercke, B., Iwata, R., Ramaswamy, A., Libé-Philip-
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